
Chapter 12 Differentiations

1.

A container is a circular cylinder, open at one end, with a base radius of r cm and a

height of h cm. The volume of the container is 1000 . Given that r and h can vary and𝑐𝑚3

that the total outer surface area of the container has a minimum value, find this value.
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2. The radius, r cm, of a circle is increasing at the rate of 5 . Find, in terms of𝑐𝑚𝑠−1

, the rate at which the area of the circle is increasing when r = 3.π

[4]

3. The volume, V, of a sphere of radius r is given by 𝑉 = 4
3 π𝑟3.

The radius, r cm, of a sphere is increasing at the rate of 0.5 . Find, in terms 𝑐𝑚𝑠−1

of , the rate of change of the volume of the sphere when r = 0.25.π
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4. (a) Given that show that where and are𝑦 = (𝑥2 − 1) 5𝑥 + 2, 𝑑𝑦
𝑑𝑥 = 𝐴𝑥2+𝐵𝑥+𝐶

2 5𝑥+2
, 𝐴, 𝐵 𝐶

integers.
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(b) Find the coordinates of the stationary point of the curve 𝑦 = (𝑥2 − 1) 5𝑥 + 2,
for Give each coordinate correct to 2 significant figures.𝑥 > 0.

[3]

(c) Determine the nature of this stationary point.
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5. (a) Given that show that where and are constants.𝑦 = 𝑥 𝑥 + 2, 𝑑𝑦
𝑑𝑥 = 𝐴𝑥+𝐵
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(b) Find the exact coordinates of the stationary point of the curve .𝑦 = 𝑥 𝑥 + 2
[3]

(c) Determine the nature of this stationary point.
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6. In this question all lengths are in centimetres.

The diagram shows a solid cuboid with height h and a rectangular base measuring 4x

by x. The volume of the cuboid is 40 . Given that x and h can vary and that the𝑐𝑚3

surface area of the cuboid has a minimum value, find this value.
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7. In this question all lengths are in centimetres.

The volume, V, of a cone of height h and base radius r is given by .𝑉 = 1
3 π𝑟2ℎ

The diagram shows a large hollow cone from which a smaller cone of height 180 and
base radius 90 has been removed. The remainder has been fitted with a circular base of
radius 90 to form a container for water. The depth of water in the container is w and the
surface of the water is a circle of radius R.

(a) Find an expression for R in terms of w and show that the volume V of the water in

the container is given by 𝑉 = π
12 (𝑤 + 180)3 − 486000π.
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(b) Water is poured into the container at a rate of 10000 Find the rate at which𝑐𝑚3𝑠−1.
the depth of the water is increasing when w = 10.
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8. A curve has equation .𝑦 = (2𝑥 − 1) 4𝑥 + 3

(a) Show that where A and B are constants.𝑑𝑦
𝑑𝑥 = 4(𝐴𝑥+𝐵)

4𝑥+3

[5]

(b) Hence write down the x-coordinate of the stationary point of the curve.

[1]

(c) Determine the nature of this stationary point.
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9. The equation of a curve is for . Find the exact𝑦 = 𝑥 16 − 𝑥2 0 ≤ 𝑥 ≤ 4
coordinates of the stationary point of the curve.
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10.

The rectangle ABCDE represents a ploughed field where AB = 300 m and AE = 400 m .

Joseph needs to walk from A to D in the least possible time. He can walk at 0.9 on 𝑚𝑠−1

the ploughed field and at 1.5 on any part of the path BCD along the edge of the𝑚𝑠−1

field. He walks from A to C and then from C to D. The distance BC = m.𝑥

a. Find, in terms of x, the total time, T s, Joseph takes for the journey.
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b. Given that x can vary, find the value of x for which T is a minimum and hence find
the minimum value of T.
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